Теория:Беспроводные сети:Измерение сигнала. Измерение децибел онлайн

Главная / Гаджеты

Узнайте о децибелах и их вариациях в контексте радиочастотного проектирования и тестирования.

Радиотехника, как и все научные дисциплины и подразделы, включает в себя довольно много специализированной терминологии. Одним из наиболее важных слов, которые вам понадобятся при работе в мире радиочастот, является «дБ» (и некоторые его варианты). Если вы глубоко закрепились в проектировании радиочастотных систем, то можете обнаружить, что слово «дБ» становится вам таким же знакомым, как и ваше собственное имя.

Как вы, наверное, знаете, дБ означает децибел. Это логарифмическая единица, которая обеспечивает удобный способ работы с отношениями, такими как отношение между амплитудами входного и выходного сигналов.

Мы не будем описывать общую информацию о децибелах, потому что она уже доступна на этой странице учебника «Основы электроники и схемотехники ». Вместо этого мы сосредоточимся на практических аспектах децибелов в конкретном контексте радиочастотных систем.

Относительный, не абсолютный

Легко забыть, что дБ является относительной единицей. Вы не можете сказать: «Выходная мощность составляет 10 дБ».

Напряжение является абсолютной величиной, потому что мы всегда говорим о разности потенциалов между двумя точками; обычно мы имеем в виду потенциал одного узла относительно узла земли 0 В. Ток также является абсолютной величиной, поскольку единица измерения (ампер) включает в себя определенное количество заряда в течение определенного количества времени. Децибел, напротив, это единица измерения, которая включает в себя логарифм отношения между двумя числами. Ярким примером является коэффициент усиления усилителя: если мощность входного сигнала равна 1 Вт, а мощность выходного сигнала равна 5 Вт, мы имеем коэффициент 5:

Таким образом, этот усилитель обеспечивает усиление по мощности 7 дБ, то есть соотношение между мощностью выходного сигнала и мощностью входного сигнала может быть выражено как 7 дБ.

Почему дБ?

Конечно, можно было бы проектировать и тестировать радиочастотные системы без использования дБ, но на практике дБ используются везде. Одно из преимуществ заключается в том, что шкала дБ позволяет выражать очень большие отношения без использования очень больших чисел: усиление по мощности в 1 000 000 раз составляет всего 60 дБ. Кроме того, при использовании дБ легко вычисляется общий коэффициент усиления или потерь в цепи прохождения сигнала, поскольку отдельные значения в дБ просто складываются (тогда как, если бы мы работали с обычными отношениями, нам потребовалось бы умножение).

Мы установили, что дБ является отношением и, следовательно, не может описывать абсолютные значения мощности и амплитуды сигнала. Однако было бы неудобно постоянно переключаться между значениями в дБ и не в дБ, и, возможно, именно поэтому радиоинженеры ввели единицу измерения дБм (dBm).

Мы можем избежать проблемы «только отношение», просто создав новую единицу измерения, которая всегда будет содержать опорное значение. В случае дБм опорное значение равно 1 мВт. Таким образом, если у нас есть сигнал 5 мВт, и мы хотим оставаться в области дБ, мы можем выразить мощность этого сигнала как 7дБм:

Вы определенно хотите ознакомиться с концепцией дБм. Это стандартная единица, используемая в реальной разработке радиочастотных систем, и она очень удобна, когда вы, например, вычисляете энергетический баланс линии связи, поскольку усиления и потери, выраженные в дБ, могут просто складываться и вычитаться из выходной мощности, выраженной в дБм.

Существует также единица дБВт (dBW); в качестве опорного значения она использует 1 Вт вместо 1 мВт. В настоящее время большинство радиоинженеров работает с относительно маломощными системами, и это, вероятно, объясняет, почему дБм встречается чаще.

Больше вариаций дБ

Две других единицы измерения, основанных на дБ, - это дБн (dBc) и дБи (dBi).

Вместо фиксированного значения, такого как 1 мВт, дБн (dBc) использует в качестве опорного сигнала уровень несущей сигнала. Например, фазовый шум (смотрите второй раздел данной главы) выражается в единицах дБн/Гц (dBc/Hz); первая часть этой единицы измерения указывает, что мощность фазового шума на определенной частоте измеряется относительно мощности несущей (в этом случае «несущая» относится к мощности сигнала на номинальной частоте).

Идеализированная точечная антенна принимает определенное количество энергии от схемы передатчика и равномерно излучает ее во всех направлениях. Считается, что эти «изотропные» антенны имеют нулевой коэффициент усиления и нулевые потери.

Однако, другие антенны могут быть сконструированы таким образом, чтобы концентрировать излучаемую энергию в определенных направлениях, и в этом смысле антенна может иметь «усиление». Антенна на самом деле не добавляет мощности к сигналу, но эффективно увеличивает переданную мощность путем концентрации электромагнитного излучения в соответствии с направлением системы связи (очевидно, что более практично, когда разработчик антенны знает пространственную взаимосвязь между передатчиком и приемником).

Единица измерения дБи (dBi) позволяет производителям антенн указывать «коэффициент усиления», который использует популярную шкалу дБ. Как всегда, когда мы работаем с дБ, нам необходимо отношение, а в случае с дБи (dBi) коэффициент усиления антенны выражается через опорное усиление изотропной антенны.

Некоторые антенны (например, те, которые сопровождаются параболическим зеркалом, «тарелкой») имеют значительный коэффициент усиления, и поэтому они могут внести нетривиальный вклад в расстояние и производительность радиочастотной системы.

Резюме

  • Шкала дБ представляет собой метод выражения отношений между двумя величинами. Она удобна и широко используется в контексте радиочастотного проектирования и тестирования.
  • Хотя значения в дБ по своей природе относительны, в шкале дБ могут быть выражены и абсолютные величины с помощью единиц измерения, которые включают в себя стандартизированное опорное значение.
  • Наиболее распространенной абсолютной единицей измерения в дБ является дБм (dBm), который выражает мощность сигнала в дБ относительно 1 мВт.
  • Единица измерения дБн (dBc) выражает мощность по отношению к мощности сигнала, связанного с измерением (с несущей).
  • Единица измерения дБи (dBi) выражает коэффициент усиления антенны относительно отклика идеализированной точечной (изотропной) антенны.

При самостоятельном выборе усилителей сотовой связи и антенн - одними из первых встают вопросы об уровне сотового сигнала , принимаемого в Вашем помещении и об используемом стандарте сотовой связи

Современные смартфоны на базе самых популярных ОС IOS (iPhone) и Android (Samsung, HTC) - помогут Вам ответить на них!

1. Как измерить сигнал GSM

1.1 Как измерить сигнал GSM на iPhone?

*3001#12345#*

Шаг 2. - числовое значение -86 в верхнем левом углу показывает уровень сигнала GSMв дБм (децибел на миливатт)

Значок E (EDGE) или G (GPRS) - говорит о том, что Ваш телефон находится в сети GSM, а не в сети 3G

Шаг 3. - нажимаем меню GSM Cell Environment -> GSM Cell info -> Neighboring Cell -> выбираем 0-й канал. Запишите или сделайте скриншот цифры напротив ARFCN (это номер рабочей частоты)

Частоты с 1 по 124 GSM 900

Частоты с 512 по 885 - это диапазон частот стандарта GSM 1800

Частоты с 974 по 1023 - это диапазон частот стандарта E-GSM 900

*3001#12345#* .

1.2 Как измерить сигнал GSM на Samsung с OC Android?

Шаг 1. Фиксируем телефон в сети GSM - зайдите в меню "Настройки/Беспроводные сети/ Мобильные сети" и отключите поддержку 3G выбрав пункт "Только сети 2G"

*#0011#

Если Ваш телефон Samsung Galaxy

Шаг 3. Проверяем уровень сигнала GSM - числовое значение -94 в строке RxPwr показывает уровень сигнала GSMв дБм (децибел на миливатт).

Шаг 4. Проверяем диапазон GSM 900 или 1800 - в верхней строке указан стандарт GSM - в данном случае GSM1800. Напротив параметра T будет указан номер рабочей частоты GSM - в данном случае 549 частота

Частоты с 1 по 124 - это диапазон частот стандарта GSM 900 . Выбирайте репитеры GSM900 и антенны GSM900

Частоты с 512 по 885 - это диапазон частот стандарта GSM 1800 . Выбирайте репитеры GSM1800 и антенны GSM1800

Частоты с 974 по 1023 - это диапазон частот стандарта E-GSM 900 . Выбирайте репитеры E-GSM900 и антенны E-GSM900

2. Как измерить сигнал 3G?

2.1 Как измерить сигнал 3G на iPhone?

Шаг 1. Открываем скрытое инженерное меню iPhone - наберите номер телефона *3001#12345#*

Шаг 2. Проверяем уровень сигнала 3G - числовое значение -95 в верхнем левом углу показывает уровень сигнала 3Gв дБм (децибел на миливатт)

Значок 3G (UMTS) или H (HSDPA) - говорит о том, что Ваш телефон находится в сети 3G, а не в сети GSM

Шаг 3. - нажимаем меню UMTS Cell Environment -> Neighbor Cells -> UMTS Set -> выбираем 0-й канал. Запишите или сделайте скриншот цифры напротив Downlink Frequency (это номер рабочей частоты)

Частоты с 2937 по 3088 - это диапазон частот стандарта 3G-UMTS 900 . Выбирайте репитеры GSM900 и антенны GSM900

Частоты с 10562 по 10838 - это диапазон частот стандарта 3G-UMTS 2100

Как отключить режим инженерного меню на iPhone?

Повторно набираем номер телефона *3001#12345#* .

Далее нажимаем пальцем на цифры уровня сотового сигнала в левом верхнем углу и переключаемся в режим стандартного показа уровня сотового сигнала. После чего нажимаем кнопку Home и выходим из инженерного меню.

2.2 Как измерить сигнал 3G на Samsung с OC Android ?

Шаг 1. Фиксируем телефон в сети 3G - зайдите в меню "Настройки/Другие сети/Мобильные сети/Режим сети" и включите поддержку 3G выбрав пункт "Только WCDMA"

Шаг 2. Открываем скрытое инженерное меню Android - наберите номер телефона *#0011#

Если Ваш телефон Samsung Galaxy и не удается зайти в меню - попробуйте варианты: вариант 1 - *#32489# ; вариант 2 - *#*#7262626#*#* ; вариант 3 - *#*#4636#*#* .

Шаг 3. Проверяем уровень сигнала 3G - числовое значение -86 параметра R показывает уровень сигнала 3Gв дБм (децибел на миливатт).

Шаг 4. Проверяем диапазон 3G 2100 или 900 - напротив параметра Rx CH будет указан номер рабочей частоты 3G - в данном случае 10638 частота, что говорит о том, что это стандарт 3G-UMTS 2100

Частоты с 2937 по 3088 - это диапазон частот стандарта 3G-UMTS 900 . Выбирайте репитеры GSM900 и антенны GSM900

Частоты с 10562 по 10838 - это диапазон частот стандарта 3G-UMTS 2100 . Выбирайте репитеры 3G 2100 и антенны 3G 2100

Шаг 5. Проверяем уровень сигнала 4G (LTE)

Если ранее был выбран режим сети LTE и телефон автоматически работает в режиме LTE

Телефон отобразит номер полосы частот, на которой он работает, в данном случае Band7 (2600МГц) Уровень сигнала -78дБ

Band 3 (1800 МГц)

Band 7 (2600 МГц)

Band 20 (800 МГц)

Band 38 (2600 МГц)

По сути, для измерения уровня шума нужен микрофон и специальная программа-анализатор. На ноутбуке, планшете или смартфоне есть микрофон. К стационарному компьютеру можно подключить внешний микрофон. Осталось скачать программу-анализатор.

На компьютере можно измерить уровень шума бесплатной программой Decibel Reader. Также шумомеры есть во многих звукозаписывающих программах. Например, Audacity.

На смартфоне или планшете микрофон, как правило, хуже, чем внешний микрофон, подключенный к компьютеру. Но и с ним можно провести достаточно точный замер уровня шума. Калибровка с профессиональными приборами показывает, что точность измерений на смартфоне может отличаться от профессионального оборудования всего на 5 децибел. Так что мобильными приложениями для оперативной работы пользуются даже специалисты по шумовой диагностике.

– одно из приложений с функцией шумомера. Обратите внимание, что измерения не в дБА, а в дБ.

«Обычный» децибел – это дБ, единица звукового давления. Но наше ухо по-разному воспринимает давление звуков разной частоты. Чтобы шумомер показывал реальный уровень шума, который слышит человек, в нем должен быть так называемый частотный фильтр А. С ним дБ превращается в тот самые дБА.

В приложении Smart Tools нет частотного фильтра, но и без него можно получить общее представление об уровне шума.

Другие приложения для измерения уровня шума:

  • MacOS : Decibel 10th, Decibel Meter Pro, dB Meter, Sound Level Meter
  • Android : Sound Meter, Decibel Meter, Noise Meter, deciBel
  • Windows : Decibel Meter Free, Cyberx Decibel Meter, Decibel Meter Pro

Важный момент:

в специализированных шумомерах (даже самых простых) параметры микрофона и обработчика сигнала согласованы. В смартфоне этого нет, поэтому точность измерения мобильным приложением всегда будет ниже, чем специальным прибором.

]Обычно, децибелами принято измерять громкость звука. Децибел – это десятичный логарифм. Это значит, что увеличение громкости на 10 децибел показывает, что звук стал в два раза громче, чем изначальный. Громкость звука в децибелах обычно описывается формулой 10Log 10 (I/10 -12) , где I - интенсивность звука в ваттах/метр квадратный.

Шаги

Сравнительная таблица уровней шума в децибелах

В приведенной ниже таблице описаны уровни децибел в порядке возрастания, и соответствующие им примеры источников звука. Также предоставлена информация о негативных последствиях для слуха напротив каждого уровня шума.

Уровни децибел для разных источников шума
Децибелы Пример источника Влияние на здоровье
0 Тишина Отсутствуют
10 Дыхание Отсутствуют
20 Шепот Отсутствуют
30 Тихий фоновый шум на природе Отсутствуют
40 Звуки в библиотеке, тихий фоновый шум в городе Отсутствуют
50 Спокойный разговор, обычный фоновый шум для пригорода Отсутствуют
60 Шум офиса или ресторана, громкий разговор Отсутствуют
70 Телевизор, шум шоссе с расстояния 15.2 метров (50 футов) Заметка; некоторым неприятен
80 Шум завода, кухонного комбайна, автомойки с расстояния 6.1 метра (20 футов) Возможны повреждения слуха при длительном воздействии
90 Газонокосилка, мотоцикл с расстояния 7.62 м (25 футов) Высока вероятность повреждения слуха при длительном воздействии
100 Лодочный мотор, отбойный молоток Высока вероятность серьезных повреждений слуха при длительном воздействии
110 Громкий рок-концерт, сталелитейный завод Может быть сразу больно; очень высока вероятность серьезных повреждений слуха при длительном воздействии
120 Цепная пила, гром Обычно наступает моментальная боль
130-150 Взлет истребителя с авианосца Возможна немедленная потеря слуха, или разрыв барабанной перепонки.

Измерение уровня звука с помощью приборов

    Используйте ваш компьютер. Со специальными программами и оборудованием, несложно измерить уровень шума в децибелах прямо на компьютере. Ниже перечислены только некоторые способы, как это можно сделать. Обратите внимание, что использование более качественного записывающего оборудования всегда даст лучший результат; другим словами, микрофона встроенного в ваш ноутбук может быть достаточно для некоторых задач, но высококачественный внешний микрофон даст более точный результат.

  1. Используйте мобильное приложение. Для измерения уровня звука в любом месте, мобильные приложения придутся как нельзя кстати. Микрофон на вашем мобильном устройстве скорее всего не даст такого качества, как внешний микрофон, подключенный к компьютеру, но он может быть на удивление точным. Например, точность считывания на мобильном телефоне вполне может отличаться на 5 децибел от профессионального оборудования. Ниже приведен список программ для считывания уровня звука в децибелах для разных мобильных платформ:

    • Для устройств Apple: Decibel 10th, Decibel Meter Pro, dB Meter, Sound Level Meter
    • Для устройств на Android: Sound Meter, Decibel Meter, Noise Meter, deciBel
    • Для телефонов на Windows: Decibel Meter Free, Cyberx Decibel Meter, Decibel Meter Pro
  2. Используйте профессиональный измеритель децибел. Обычно это недешево, но, возможно, это самый простой способ получить точные измерения уровня звука, который вас интересует. Также такое устройство называют "измеритель уровня звука", это специализированное устройство (можно купить в интернет-магазине или специализированных магазинах), которые использует чувствительный микрофон для измерения уровня шума вокруг и выдает точное значение в децибелах. Так как подобные устройства не пользуются большим спросом, они можно быть достаточно дорогими, зачастую цены на них начинаются с $200 даже за устройства начального класса.

    • Обратите внимание, что измеритель децибел/уровня звука может называть несколько иначе. Например, другое похожее устройство под названием "измеритель шума" делает то же самое, что и измеритель уровня звука.

    Математическое вычисление децибел

    1. Узнайте интенсивность звука в ваттах/метр квадратный. В повседневной жизни, децибелы применяются как простая мера громкости. Однако, все не так просто. В физике децибелы часто рассматривают как удобный способ выражения "интенсивности" звуковой волны. Чем больше амплитуда звуковой волны, тем больше энергии она передает, тем больше частиц воздуха колеблется на ее пути, и тем интенсивнее сам звук. Из-за прямой связи между интенсивностью звуковой волны и громкостью в децибелах, есть возможность найти значение децибел, зная только интенсивность уровня звука (которая обычно измеряется в ваттах/метр квадратный)

      • Заметьте, что для обычных звуков значение интенсивности очень мало. Например, звук с интенсивностью 5 ×10 -5 (или 0.00005) ватт/метр квадратный соответствует приблизительно 80 децибелам, что приблизительно соответствует громкости блендера или кухонного комбайна.
      • Для лучшего понимания отношения между интенсивностью и уровнем децибел, давайте решим одну задачу. Для примера возьмем такую: давайте считать, что мы – звукорежиссеры, и нам нужно опередить уровень фонового шума в студии звукозаписи, чтобы улучшить качество записываемого звука. После установки оборудования, мы зафиксировали фоновый шум интенсивностью 1 × 10 -11 (0.00000000001) ватт/метр квадратный . Далее используя эту информацию мы можем вычислить уровень фонового шума студии в децибелах.
    2. Поделите на 10 -12 . Если вы знаете интенсивность вашего звука, вы можете легко подставить ее в формулу 10Log 10 (I/10 -12) (где "I" – интенсивность в ваттах/метр квадратный) чтобы получить значение в децибелах. Для начала поделите 10 -12 (0.000000000001). 10 -12 отображает интенсивность звука с оценкой 0 на шкале децибел, сравнивая интенсивность вашего звука с этим числом, вы найдете его отношение к начальному значению.

      • В нашем примере мы разделили значение интенсивности 10 -11 на 10 -12 и получили 10 -11 /10 -12 = 10 .
    3. Вычислим Log 10 от этого числа и умножим его на 10. Чтобы закончить решение, вам осталось лишь взять логарифм по основанию 10 от получившегося числа и затем, наконец, умножить его на 10. Это подтверждает, что децибелы – это логарифмическое значение по основанию 10 – другими словами, увеличение уровня шума на 10 децибел говорит об удвоении громкости звука.

      • Наш пример легко решить. Log 10 (10) = 1. 1 ×10 = 10. Поэтому, значение фонового шума в нашей студии равняется 10 децибел . Это достаточно тихо, но все еще улавливаемо нашим высококачественным звукозаписывающим оборудованием, потому нам, вероятно, нужно устранить источник шума для достижения более высокого качества записи.
    4. Понимание логарифмической природы децибел. Как было сказано выше, децибелы – это логарифмические значения с основанием 10. Для любого данного значения децибел, шум на 10 децибел большой – громче изначального в два раза, а шум больший на 20 децибел – в четыре раза и так далее. Это дает возможность обозначить большой промежуток интенсивностей звука, которые могут быть восприняты человеческим ухом. Самый громкий звук, который человек может услышать, не испытывая боли – в миллиард раз более громкий, чем самый тихий звук, который человек может услышать. Используя децибелы, мы избегаем использования огромных чисел для описания обычных звуков - вместо этого нам достаточно трех цифр.

      • Подумайте, что проще использовать: 55 децибел или 3 × 10 -7 ватт/квадратный метр? Оба значения равны, но вместо использования научной формы записи (в виде очень малой доли числа), гораздо удобнее использовать децибелы, которые являются своего рода простым сокращением для легкого повседневного использования.

В итоге получим формулу дальности связи:
Пользуясь всеми вышеперечисленными данными можно расчитать дальность wi-fi сигнала. Практическая часть Важное отступление: Сначала планировалось получить в децибелах цифру, которая соответствует затуханию при прохождении сигнала через препятствия. Но данная затея провалилась, т.к. не получилось установить причину по которой передатчик при фиксированном bitrate, например 54mbit, при выходе за границу зоны на которой может быть достигнута эта скорость, переключается на bitrate ниже (48mbit). Поэтому было решено получать результат в метрах. Для проведения практических экспериментов было взято следующее оборудование: wi-fi router ASUS WL500G Premium version 1 Мощность передатчика - 18dbm Мощность антенны - 5dbm netbook hp compaq mini 311 Мощность антенны - 5dbm UPS Рассчитаем дальность сигнала в идеальном случае: В качесте рабочей частоты был выбран 13 канал f=2484 МГц, скорость 54MBpsпри которой чувствительность -66dbm. Найдем суммарное усиление системы: Y=18dbm + 5dbm + 4dbm + 66dbm - 1dbm - 1dbm = 95dbm FSL = Y - SOM = 95 - 10 = 85 D= 10^(85/20 -33/20 - lg2472) = 10^-2,05 = 0,165 километров В теории получилось, что приблизительная дальность действия wi-fi сигнала в нашем случае будет равна 165 метрам. Проверим данные расчеты на практике. В качестве полигона для исследований была выбрана следующая территория:

Маршрутизатор подключался к UPS и фиксировался в начальной точке. Вдоль дороги каждые 25 метров останавливался человек и производил замеры с помощью ноутбука. Вот результат замеров:

Номер измерения Bitrate, mbps Signal, дб Noise, дб Расстояние, м
1 54 30 78 25
2 54 45 82 50
3 36 55 88 75
4 24 58 83 100
5 18 63 73 125
6 18 72 81 150
7 1 81 57 200
Как видно из таблицы, скорость 54mbps передатчик и приемник перестали поддерживать в промежутке 50 и 75 метрами, а конкретнее, переход на другую скорость был отмечен на расстоянии 55 метров. Учитывая тот факт, что антенна у нас круговая, то полученное расстояние является радиусом действия, а диаметр действия, то есть дальность, равна 110 метрам. Расхождение между теорией и практикой объясняется тем, что не все параметры были учтены, но это в нашем случае нормально и не критично. Таким образом, можно говорить о том, что наш маршрутизатор обеспечивает скорость 54 mbps на расстоянии 110 метров. Так же следует отметить тот факт, что на расстоянии больше чем 200 метров сигнал продолжает приниматься, но скорость передачи данных равна 1mbps. При такой скорости информация не может нормально передаваться. Отталкиваясь от этого факта, попробуем посмотреть влияние железо-бетона на wi-fi сигнал: Чтобы посмотреть как влияет такая преграда было решено использовать следующее здание:

На первом этаже здания был установлен наш маршрутизатор. Таким образом получалось что мы измеряем сигнал из «железо-бетонной коробки». Вот результаты измерений:
Номер измерения Bitrate, mbps Signal, dbm Noise, dbm Расстояние, м
1 54 56 87 4
2 36 53 84 25
3 2 53 84 50
4 1 82 58 100
В этом случае скорость 54 мегабит перестала поддерживаться на расстоянии 20 метров. Таким образом радиус действия wi-fi сигнала на данной чкорости равен 40 метрам. Замечание: Стоит так же обратить внимание на то, что толщина такой стены равна 10 сантиметрам. Кирпичное помещение подобного рода пропускает сигнал на расстоянии 50 метров. К сожалению, толщину стены кирпича, зафиксировать не удалось. Выводы: Можно ли в этих условиях сформулировать универсальное руководство по выбору места установки точки доступа? Скорее всего, нет, но некоторые базовые принципы, обобщающие накопленный опыт, постараемся их назвать. 1. Расположите точки доступа и абонентов беспроводной сети так, чтобы количество преград между ними было минимально. Особенно следует стремиться к сокращению числа стен и перекрытий: каждая преграда уменьшает максимальный радиус зоны покрытия на 1–45 м. 2. Обратите внимание на угол между точками доступа (абонентами сети) и протяженными препятствиями. Стена толщиной 0,5 м при угле в 45° для радиоволны эквивалентна стене с толщиной 1 м. Но если излучение приходит на нее под углом в единицы градусов, ее эквивалентная толщина будет на порядок выше! Заметим, что не все программы для планирования радиосетей в помещении учитывают этот нюанс. Наиболее предпочтительный и прогнозируемый по результатам вариант, когда сигнал направляется под прямым углом к перекрытиям или стенам. 3. Строительные материалы влияют на прохождение сигнала по-разному: целиком металлические двери или алюминиевая облицовка сказываются негативно. Старайтесь также, чтобы между абонентами сети отсутствовали железобетонные препятствия. 4. Несмотря на высокую инерционность ПО мониторинга мощности сигнала, не пренебрегайте его помощью и позиционируйте антенну на лучший прием. 5. Творчески относитесь к размещению прилагаемых в комплекте многих PCI-адаптеров выносных антенн: «примагнитив» их к корпусу в неудачном месте, можно потерять до 25% дальности связи. 6. Удалите от абонентов беспроводных сетей, по крайней мере на 1–2 метра, электроприборы, генерирующие радиопомехи: мониторы, электромоторы, с особым пристрастием отнеситесь к микроволновым печам и беспроводным телефонам диапазона 2,4 GHz. Для типового жилья обеспечение требуемого покрытия, как правило, проблемой не является. Но если вы обнаруживаете неуверенную связь в пределах квартиры, попробуйте начать свои эксперименты, расположив точку доступа посередине условной линии, соединяющей наиболее удаленные комнаты, в которых необходима беспроводная сеть. Если данных мер окажется недостаточно, то следует рассмотреть вариант с применением комнатных всенаправленных и направленных антенн с увеличенным коэффициентом усиления. Для ангаров, складов, залов, больших офисных помещений с малопоглощающими перегородками зачастую достаточно эффективным средством упрощения организации WLAN являются «потолочные» точки доступа, имеющие форму больших таблеток, в которых использованы антенны со специальной формой диаграммы направленности.

© 2024 mchard.ru -- Ноутбук. Работа с текстом. Монитор. Гаджеты. Компьютер. Skype. Восстановление