Системная шина — что это? Процессоры Из каких элементов состоит шина на компьютере.

Главная / Ноутбук

Служит для обмена командами и данными между компонентами ЭВМ, расположенными на мат. плате. ПУ подключается к шине через контроллеры (открытая архитектура). передача информации по сист. шине осущ-ся по тактам.

Сист. шина включает в себя:

Кодовую шину данных для //-ой передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно (64 разряда)

Кодовую шину адреса ячейки ОЗУ (32 разряда)

Кодовую шину инструкций (команд и управляющих сигналов, импульсов) во все блоки ЭВМ (32 разряда)

Шину питания для подключения блоков ЭВМ к системе энергопитания

Сист. шина обеспечивает 3 направления передачи информации: -между МП и ОЗУ; -между МП и контроллером устройств; -между ОЗУ и Внеш Устр-вами (ВЗУ и ПУ, в режиме прямого доступа к памяти)

Все устройства подключаются к сист. шине через контроллеры -- устр-ва, обеспечивающие взаимодействие ВУ и сист. шины.

Для освобождения МП от управления обменом информацией между ОЗУ и ВУ предусмотрен режим Прямого доступа в память (DMA - direct memory access).

Характеристики сист. шины: кол-во обслуживаемых ею устройств и пропускная способность, т.е. макс. возможная скорость передачи информации.

Пропускная способность шины зависит от:

Разрядности шины (или ширины) - кол-во бит, кот. м.б. передано по шине одновременно (сущ-ют 8,16,32, и 64-рязрядные шины);

Тактовой частоты шины - частоты, с кот. передаются биты информации по шине.

Основные характеристики шин:

PCI (Peripheral Component Interconnect) – самая распространенная системная шина. Быстродействие шины не зависит от количества подсоединенных устройств. Поддерживает следующие режимы:

- Plug and Play (PnP ) – автоматическое определение и настройка подключенного к шине устройства;

- Bus Mastering – режим единоличного управления шиной любым устройством, подключенным к шине, что позволяет быстро передать данные по шине и освободить ее.

AGP (Accelerated Graphics Port) – магистраль между видеокартой и ОЗУ. Разработана, так как параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Шина работает на большей частоте, что позволяет ускорить работу графической подсистемы ЭВМ.

Основные характеристики шин

Лекция 5

18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ в ЭВМ состоят из последовательности ячеек, каждая из которых содержит значение 1-ого байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде (0,1).

ЗУ характеризуется 2-мя параметрами:

Объем памяти - размер в байтах, доступных для хранения информации

Время Доступа к ячейкам памяти - средний временной интервал в течении кот. находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается. (В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Т.е число адресов 2 32 , то есть возможное адресное пространство составляет 4,3 Гбайт. время доступа 0,005-0,02 мкс. 1 с = 10 6 мкс.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOS – Basic Input-Output System).

Внешние ЗУ. ВЗУ для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с сист. шиной через контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и сист. шины в режиме прямого доступа к памяти, т.е. без участия МП. ИНТЕРФЕЙС -- это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

ВЗУ можно разделить по критерию транспортировки на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные ВЗУ состоят из носителя, подключ-ого к порту вв/вывода (обычно ЮСБ), (флеш-память) или носителя и привода (накопители на ГМД, приводы СиДи и ДВД). В стационарных ВЗУ носитель и привод объединены в единое устройство (НЖМД). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь - записать на носитель служебную информацию.

Основные Технические Характеристики ВЗУ

Информационная емкость определяет наибольшее кол-во ед. данных, кот может одновременно хранить в ВЗУ (зависит от площади объема носителя и плотности записи.)

Плотность записи - число бит информации, записанных на единице поверхности носителя. Различают продольную плотность (бит/мм), и поперечную плотность.//

Время доступа - интервал времени от момента запроса (чтения или записи) до момента выдачи блока (включая время поиска инфции на носителе и время чтения или записи.)

Скорость передачи данных определяет кол-во данных, считываемых или записываемых в единицу времени и зависит от скорости движения носителя, плотности записи, числа каналов и тп.

Системная шина - это основная интерфейсная система ПК, обеспечивающая сопряжение и связь всех его устройств между собой.

Основной функцией системной шины является передача информации между процессором и остальными устройствами ЭВМ . Все блоки, а точнее их порты ввода-вывода, через соответствующие разъемы подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры).

Управление системной шиной осуществляется непосредственно, либо, чаще через контроллер шины . Обмен информацией между ВУ и системной шиной выполняется с использованием ASCII-кодов. Системная шина состоит из трех шин: шины управления, шины данных и адресной шины. По этим шинам циркулируют управляющие сигналы, данные (числа, символы), адреса ячеек памяти и номера устройств ввода-вывода. Важнейшими функциональными характеристиками системной шины являются: количество обслуживаемых ею устройств и ее пропускная способность, т.е. максимально возможная скорость передачи информации. Пропускная способность шины зависит от ее разрядности (есть шины 8-, 16-, 32- и 64-разрядные) и тактовой частоты, на которой шина работает.

· Адресная шина.У процессоров Intel Pentium (а именно они наиболее распростра­нены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комби­нация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

· Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе про­цессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

· Шина команд . Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, из тех областей, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укла­дываются в один байт, однако, есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная (напри­мер, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Процессор.

Процессор (ЦП) выполняет логические и арифметические операции, определяет порядок выполнения операций, указывает источники данных и приемники результатов. Работа процессора происходит под управлением программы.

Процессор - основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки опе­ративной памяти, но в этих ячейках данные могут не только храниться, но и изме­няться. Внутренние ячейки процессора называют регистрами. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имею­щих стандартную длину 1 байт и более низкое быстродействие);

При первом знакомстве с ЭВМ считают, что процессор состоит из пяти устройств: арифметико-логического устройства (АЛУ), устройства управления (УУ), регистров общего назначения (РОН), кэш-памяти и генератора тактовых частот.

устройство управления (УУ)- формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импуль­сы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ, т.е. отвечает за порядок выполнения команд, из которых состоит программа.

арифметико-логическое устройство (АЛУ)- предназначено для вы­полнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор), Промежуточные результаты сохраняются в РОН .

местная память (МПП) - служит для кратковременного хра­нения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах общего назначения (РОН) и используется для обеспечения высокого быстродействия машины, ибо оперативная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

· Кэш- память служит для повышения быстродействия процессора, путем уменьшения времени его непроизводительного простоя. Она применяется для кратковременного хра­нения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. Кэш- память строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо оперативная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память.

Нередко кэш-память распределяют по нескольким уровням кеш L1 (level1-первого уровня) и L2 (level2 – второго уровня). Кэш первого уровня выполняется в том же кристалле, что и сам процессор, имеет объем порядка десят­ков Кбайт и обычно работает на частоте, согласованной с частотой ядра процессора. Кэш второго уровня находится либо в кристалле процессора, либо она размещена на материнской плате вблизи процессора, тогда ее объемы могут достигать нескольких Мбайт, но работает она на частоте материнской платы.

· генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая опера­ция в машине выполняется за определенное количество тактов:

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти. Часть данных он интерпретирует непосред­ственно как данные, часть данных - как адресные данные, а часть - как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относя­щиеся к одному семейству, имеют одинаковые или близкие системы команд. Про­цессоры, относящиеся к разным семействам, различаются по системе команд и не взаимозаменяемы.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процес­сором. Процессоры, имеющие разные системы команд, как правило, несовмести­мы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86.

Основные параметры процессоров. Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты (множитель) и размер кэш-памяти.

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенно! понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В, а в настоящее время оно составляет менее 3 В. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры х86 был 16-разрядными. Начиная с процессора 80386, они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяете не разрядностью шины данных, а разрядностью командной шины).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник, а в персональном компью­тере тактовые импульсы задает одна из микросхем, входящая в микропроцессор­ный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в еди­ницу времени, тем выше его производительность.

По чисто физическим причинам, так как она представляет собой не кристалл кремния, а большой набор проводни­ков и микросхем, материнская плата не может рабо­тать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внут­реннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более, т.о. если частота системной шины 133 Мгц, а коэффициент (множитель ядра) равен 8, то рабочая тактовая частота составит 1Ггц.

Вся история IBM PC связана с процессорами фирмы Intel, которая выпускает эти микросхемы с 1970г, начиная с четырехразрядного 4004. Дадим неформальную характеристику основных параметров этих процессоров.

Микропроцессор Начало выпуска Разрядность Тактовая частота, Мгц. Быстродействие Примечание
8июня 1978г. 16 бит 0,33 MIPS 0,66 MIPS 0,75 MIPS
февраль1982г 16 бит 0,9 MIPS 1,5 MIPS 2,66 MIPS
80386DX 17.10.1985г. 32 бита 5-6 MIPS 6-7 MIPS 8,5 MIPS
11,4 MIPS 16 Kb кеш–памяти второго уровня (впервые)
80386SX 16июня1988г 16 бит 2,5 MIPS 2,5 MIPS 2,7 MIPS 2,9 MIPS
80386SL 15октября1989 16 бит 4,2 MIPS 5,3 MIPS Первый процессор специально предназначенный для персональных компьютеров
80486DX 10апреля1989г 32 бит 20 MIPS 7,4 MFLOPS 27 MIPS 22,4 MFLOPS 41 MIPS 14,5 MFLOPS Производительность возросла в 50 раз по сравнению с 8086
80486SX 22апреля1991г 32 бита 13 MIPS 20 MIPS 27 MIPS Аналог 80486 но без сопроцессора.
Pentium 22марта 1993г 32 бита 100 MIPS 55,1 MFLOPS 112 MIPS 63,6 MFLOPS 126,5 MIPS 2,02 GFLOPS 203 MIPS 2,81 GFLOPS 3,92GFLOPS
Pentium PRO 1ноября1995г
Pentium с технологией MMX 2июня 1997г. 32 бита 5,21 GFLOPS Технология MMX обеспечивает увеличение производительности процессора при работе с мультимедийными и трехмерными приложениями.
Pentium II 7 мая 1997г
Celeron 12апреля1998г Удешевленная версия Pentium II за счет изъятия кэш 2-го уровня
Xeon
PentiumIII Расширенный PentiumII за счет 70 дополнительных команд, позволяющих ускорить расчеты, применяемые в трехмерной графике. Благодаря этому выполняет до 4 операций над числами с плавающей точкой одновременно.
PentiumIV

Важным критерием, определяющим характеристики шины, может служить ее це­левое назначение. По этому критерию можно выделить:

    шины «процессор-память»;

    шины ввода/вывода;

    системные шины.

Шина «процессор-память»

Шина «процессор-память» обеспечивает непосредственную связь между централь­ным процессором (ЦП) вычислительной машины и основной памятью (ОП). В со­временных микропроцессорах такую шину часто называют шиной переднего плана и обозначают аббревиатурой FSB (Front-Side Bus). Интенсивный трафик между процессором и памятью требует, чтобы полоса пропускания шины, то есть количе­ство информации, проходящей по шине в единицу времени, была наибольшей. Роль этой шины иногда выполняет системная шина (см. ниже), однако в пла­не эффективности значительно выгоднее, если обмен между ЦП и ОП ведется по отдельной шине. К рассматриваемому виду можно отнести также шину, свя­зывающую процессор с кэш-памятью второго уровня, известную как шина зад­ него плана - BSB (Back-Side Bus). BSB позволяет вести обмен с большей ско­ростью, чем FSB, и полностью реализовать возможности более скоростной кэш-памяти.

Поскольку в фон-неймановских машинах именно обмен между процессором и памятью во многом определяет быстродействие ВМ, разработчики уделяют свя­зи ЦП с памятью особое внимание. Для обеспечения максимальной пропускной способности шины «процессор-память» всегда проектируются с учетом особенно­стей организации системы памяти, а длина шины делается по возможности мини­мальной

Шина ввода/вывода

Шина ввода/вывода служит для соединения процессора (памяти) с устройствами ввода/вывода (УВВ). Учитывая разнообразие таких устройств, шины ввода/вы­вода унифицируются и стандартизируются. Связи с большинством УВВ (но не с видеосистемами) не требуют от шины высокой пропускной способности. При проектировании шин ввода/вывода в учет берутся стоимость конструктивна и со­единительных разъемов. Такие шины содержат меньше линий по сравнению с ва­риантом «процессор-память», но длина линий может быть весьма большой. Ти­пичными примерами подобных шин могут служить шины PCI и SCSI.

Системная шина

С целью снижения стоимости некоторые ВМ имеют общую шину для памяти и устройств ввода/вывода. Такая шина часто называется системной. Системная шина служит для физического и логического объединения всех устройств ВМ. Поскольку основные устройства машины, как правило, размещаются на общей монтажной плате, системную шину часто называют объединительной шиной (backplane bus), хотя эти термины нельзя считать строго эквивалентными.

Системная шина в состоянии содержать несколько сотен линий. Совокупность линий шины можно подразделить на три функциональные группы (рис. 4.4): шину данных, шину адреса и шину управления. К последней обычно относят также ли­нии для подачи питающего напряжения на подключаемые к системной шине мо­дули.

Функционирование системной шины можно описать следующим образом. Если один из модулей хочет передать данные в другой, он должен выполнить два дей­ствия: получить в свое распоряжение шину и передать по ней данные. Если какой-то модуль хочет получить данные от другого модуля, он должен получить доступ к шине и с помощью соответствующих линий управления и адреса передать в другой модуль запрос. Далее он должен ожидать, пока модуль, получивший за­прос, пошлет данные.

Физически системная шина представляет собой совокупность параллельных электрических проводников. Этими проводниками служат металлические полос­ки на печатной плате. Шина подводится ко всем модулям, и каждый из них подсо­единяется ко всем или некоторым ее линиям. Если ВМ конструктивно выполнена на нескольких платах, то все линии шины выводятся на разъемы, которые затем объединяются проводниками на общем шасси.

Среди стандартизированных системных шин универсальных ВМ наиболее из­вестны шины Unibus, Fastbus, Futurebus, VME, NuBus, Multibus-H. Персональные компьютеры, как правило, строятся на основе системной шины в стандартах ISA, EISA или МСА.

Скорость шины системной платы не влияет на скорость установленного процессора. В компьютере, материнская плата и процессор - это две отдельные составляющие. Тем не менее, пользовательский опыт измерений заключается в том, насколько хорошо они работают вместе.


Процессор

Основной процессор компьютера, имеет определенную скорость. На некоторых компьютерах скорость процессора может быть изменена через настройки BIOS материнской платы. Ошибки совместимости оборудования в сторону скорости процессора не меняются из-за любой другой части компьютера. Но процессор является самой быстрой частью компьютера и часто другое оборудование не может за ним угнаться. Процессор обрабатывает всю вычислительную работу компьютера за пределами крупной графической работы которая выполняется с помощью GPU.

Шина материнской платы

Шина материнской платы - это часть устройства, которая передает данные между деталями компьютера. Термин «скорость шины» относится к тому, как быстро системная шина может перемещать данные с одного компонента компьютера к другому. Чем быстрее шина, тем больше данных она может передвигать в течение определенного количества времени. К системной «шине» подключается процессор для компьютера через «северный мост», который организует обмен данными между оперативной памятью компьютера и процессором. Это самая быстрая часть шины материнской платы и обрабатывает наиболее жизненно важную нагрузку компьютера.

Шина процессора - соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится , далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus - FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP . Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS , называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB . В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность - 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

© 2024 mchard.ru -- Ноутбук. Работа с текстом. Монитор. Гаджеты. Компьютер. Skype. Восстановление