Широтно-импульсная модуляция (ШИМ). Аналоговая и цифровая

Главная / Сеть


ШИМ регулятор предназначен для регулирования скорости вращения полярного двигателя,яркости освещения лампочки или мощностью нагревательного элемента.

Преимущества:
1 Простота изготовления
2 Доступность компонентов(стоимость не превышает 2$)
3 Широкое применение
4 Для новичков лишний раз потренироваться и порадовать себя=)

Однажды понадобился мне "девайс" для регулировки скорости вращения кулера. Для чего именно уже не помню. С начала пробовал через обычный переменный резистор, он сильно грелся и это было не приемлемо для меня. В итоге покопавшись в интернете нашел схему на мне уже знакомой микросхеме NE555. Это была схема обычного ШИМ регулятора с скважностью (длительностью) импульсов равной или меньше 50% (позже приведу графики как это работает). Схема оказалось очень простой и не требовала настройки, главное было не накосячить с подключением диодов и транзистора. Первый раз его собрал на макетной плате и испытал, все заработало с пол оборота. Позже уже развел небольшую печатную плату и аккуратнее все выглядело=) Ну теперь взглянем на саму схему!

Схема ШИМ регулятора

Из нее мы видим что это обычный генератор с регулятором скважности импульсов собранный по схеме из даташита. Резистором R1 мы и меняем эту скважность, резистор R2 служит нам защитой от КЗ, так как 4 вывод микросхемы через внутренний ключ таймера подключен на землю и при крайнем положении R1 он просто замкнет. R3 это подтягивающий резистор. С2 это задающий частоту конденсатор. Транзистор IRFZ44N - это N канальный мосфет. D3 - это защитный диод который предотвращает выхода из строя полевик при обрыве нагрузки. Теперь немного о скважности импульсов. Скважность импульса - это отношение его периода следования (повторения) к длительности импульса, то есть через определенный промежуток времени будет происходить переход от (грубо говоря) плюса к минусу, а точнее от логической единицы к логическому нулю. Так вот этот промежуток времени между импульсами и есть та самая скважность.


Скважность при среднем положении R1

Скважность при крайнем левом положении R1


Скважность при крайнем правом положении R

Ниже приведу печатные платы с расположением деталей и без них


Теперь немного о деталях и их вид. Сама микросхема выполнена в DIP-8 корпусе, конденсаторы керамические малогабаритные, резисторы на 0,125-0,25 ватт. Диоды обычные выпрямительные на 1А (самое доступное это 1N4007 их везде навалом). Так же микросхему можно устанавливать на панельку, если в будущем вы хотите ее использовать в других проектах и лишний раз не выпаивать ее. Ниже приведу фотографии деталей.



Необходимость регулировки постоянного напряжения для питания мощных инерционных нагрузок чаще всего возникает у владельцев автомобилей и другой авто-мото техники. Например, появилось желание плавно менять яркость ламп освещения салона, габаритных огней, автомобильных фар или вышел из строя узел регулирования оборотов вентилятора автомобильного кондиционера, а замены нет.
Осуществить такое желание иногда нет возможности из-за большого тока потребления этими устройствами - если устанавливать транзисторный регулятор напряжения , компенсационный или параметрический, на регулирующем транзисторе будет выделяться очень большая мощность, что потребует установки больших радиаторов или введения принудительного охлаждения с помощью малогабаритного вентилятора от компьютерных устройств.

Выходом из положения является применение широтно - импульсных схем, управляющих мощными полевыми силовыми транзисторами MOSFET . Эти транзисторы могут коммутировать очень большие токи (до 160А и более) при напряжении на затворе 12 - 15 В. Сопротивление открытого транзистора очень мало, что позволяет заметно снизить рассеиваемую мощность. Схемы управления должны обеспечивать разность напряжений между затвором и истоком не менее 12 ... 15 В, в противном случае сопротивление канала сильно увеличивается и рассеиваемая мощность значительно возрастает, что может привести перегреву транзистора и выходу его из строя. Для широтно - импульсных автомобильных низковольтных регуляторов выпускаются специализированные микросхемы, например U 6 080B ... U6084B , L9610, L9611, которые содержат узел повышения выходного напряжения до 25 -30 В при напряжении питания 7 -14 В, что позволяет включать выходной транзистор по схеме с общим стоком, чтобы можно было подключать нагрузку с общим минусом, но достать их практически невозможно. Для большинства нагрузок, которые потребляют ток не более 10А и не могут вызвать просадку бортового напряжения можно использовать простые схемы без дополнительного узла повышения напряжения.

Первый ШИМ регулятор собран на инверторах логической К МОП микросхемы. Схема представляет собой генератор прямоугольных импульсов на двух логических элементах, в котором за счёт диодов раздельно меняется постоянная времени заряда и разряда частотозадающего конденсатора, что позволяет изменять скважность выходных импульсов и значение эффективного напряжения на нагрузке.

В схеме можно использовать любые инвертирующие КМОП элементы, например К176ПУ2, К561ЛН1, а также любые элементы И, ИЛИ-НЕ, например К561ЛА7, К561ЛЕ5 и подобные, соответственно сгруппировав их входы. Полевой транзистор может быть любым из MOSFET , которые выдерживают максимальный ток нагрузки, но желательно использовать транзистор с как можно большим максимальным током, т.к. у него меньшее сопротивление открытого канала, что уменьшает рассеиваемую мощность и позволяет использовать радиатор меньшей площади.
Достоинство ШИМ-регулятора на микросхеме К561ЛН2 - простота и доступность элементов,
недостатки - диапазон изменения выходного напряжения чуть меньше 100% и невозможно доработать схему с целью введения дополнительных режимов, например плавного автоматического увеличения или понижения напряжения на нагрузке, т.к. регулирование производится путём изменения сопротивления переменного резистора, а не изменением уровня управляющего напряжения.

Гораздо лучшими характеристиками обладает вторая схема, но количество элементов в ней чуть больше.

Регулировка эффективного значения напряжения на нагрузке от 0 до 12 В производится изменением напряжения на управляющем входе от 8 до 12 В. Диапазон регулировки напряжения практически 100%. Максимальный ток нагрузки полностью определяется типом силового полевого транзистора и может быть очень значительным. Так как выходное напряжение пропорционально входному управляющему напряжению, схема может использоваться как составная часть системы регулирования, например системы поддержания заданной температуры, если в качестве нагрузки использовать нагреватель, а датчик температуры подключить к простейшему пропорциональному регулятору, выход которого подключается к управляющему входу устройства. Описанные устройства имеют в основе несимметричный мультивибратор, но ШИМ регулятор можно построить на микросхеме ждущего мультивибратора

Светодиоды используются практически во всех технике вокруг нас. Правда иногда возникает необходимость регулировать их яркость (например, в фонариках, или мониторах). Самым простым выходом в этой ситуации, кажется изменить количество тока, пропускаемого через светодиод. Но это не так. Светодиод – довольно чувствительный компонент. Постоянное изменение количества тока может существенно сократить срок его работы, или вообще сломать. Так же надо учитывать, что нельзя использовать ограничительный резистор, так как в нем будет накапливаться лишняя энергия. При использовании батареек это недопустимо. Еще одна проблема при таком подходе – цвет света будет меняться.

Есть два варианта:

  • Регулирование ШИМ
  • Аналоговое

Эти методы контролируют проходящий через светодиод ток, но между ними есть определенные различия.
Аналоговое регулирование изменяет уровень тока, который проходит через светодиоды. А ШИМ регулирует частоту подачи тока.

ШИМ-регулирование

Выходом из этой ситуации может быть использование широтно-импульсной модуляции (ШИМ). При такой системе светодиоды получают необходимый ток, а яркость регулируется с помощью подачи питания с высокой частотой. То есть, частота периода подачи изменяет яркость светодиодов.
Несомненный плюс ШИМ-системы – сохранение продуктивности светодиода. КПД составит около 90%.

Виды ШИМ-регулирования

  • Двухпроводная. Часто используется в системе освещения машин. Источник питания преобразователя должен иметь схему, которая формирует сигнал ШИМ на DC-выходе.
  • Шунтирующее устройство. Чтобы сделать период включении/выключения преобразователя используют шунтирующий компонент, который обеспечивает путь для выходного тока помимо светодиода.

Параметры импульсов при ШИМ

Частота следования импульсов не меняется, поэтому никаких требований в определении яркости света к ней нет. В данном случае, меняется только ширина, или время положительного импульса.

Частота импульсов

Даже с учетом того, что особых претензий к частоте нет, существуют граничные показатели. Они определяются чувствительностью глаза человека к мельканиям. Например, если в кино мелькания кадров должны составлять 24 кадра в секунду, чтобы наш глаз воспринимал его как одно движущееся изображение.
Чтобы мелькания света воспринимались как равномерный свет, частота должна составлять не меньше 200Гц. По верхним показателям ограничений нет, но ниже никак нельзя.

Как работает регулятор ШИМ

Для непосредственного управления светодиодами применяется транзисторный ключевой каскад. Обычно для них используют транзисторы, способные накапливать большие объемы мощности.
Это необходимо при использовании светодиодных лент или мощных светодиодах.
Для небольшого количества или невысокой мощности вполне достаточно использования биполярных транзисторов. Так же можно подключать светодиоды прямо к микросхемам.

Генераторы ШИМ

В системе ШИМ в качестве задающего генератора могут использовать микроконтроллер, или схема, состоящая из схем малой степени интеграции.
Так же возможно создание регулятора из микросхем, которые предназначены для импульсных блоков питания, или логические микросхемы К561, или интегральный таймер NE565.
Умельцы используют в этих целях даже операционный усилитель. Для этого на нем собирается генератор, который можно регулировать.
Одна из наиболее используемых схем основана на таймере 555. По сути, это обычный генератор прямоугольных импульсов. Частота регулируется конденсатором С1. при выходе у конденсатора должно быть высокое напряжение (это равно с соединением с плюсовым источником питания). А заряжается он тогда, когда на выходе присутствует низкое напряжение. Этот момент и дает получение импульсов разной ширины.
Еще одной популярной схемой является ШИМ на основе микросхемы UC3843. в этом случае схема включения изменена в сторону упрощения. Для того, чтобы управлять шириной импульса, используется подача регулирующего напряжения положительной полярности. На выходе в таком случае получается нужный импульсный сигнал ШИМ.
Регулирующее напряжение действует на выход так: при снижении широта увеличивается.

Почему ШИМ?

  • Главное преимущество этой системы – легкость. Схемы использования очень просты и легки в реализации.
  • Система ШИМ – регулирования дает очень широкий диапазон регулировки яркости. Если говорить о мониторах, то возможно применение CCFL-подсветки, но в таком случае яркость можно уменьшить только в два раза, так как CCFL-подсветка очень требовательна к количеству тока и напряжению.
  • Используя ШИМ можно удерживать ток на постоянном уровне, а значит светодиоды не пострадают и цветовая температура меняться не будет.

Недостатки использования ШИМ

  • Со временем мерцание изображение может быть довольно заметно, особенно при низкой яркости или движении глаз.
  • При постоянном ярком освещении (например, свете солнца) изображение может расплываться.

Регулировать напряжение питания мощных потребителей удобно с помощью регуляторов с широтно-импульсной модуляцией. Преимущество таких регуляторов заключается в том, что выходной транзистор работает в ключевом режиме, а значить имеет два состояния - открытое или закрытое. Известно, что наибольший нагрев транзистора происходит в полуоткрытом состоянии, что приводит к необходимости устанавливать его на радиатор большой площади и спасать его от перегрева.

Предлагаю простую схему ШИМ регулятора. Питается устройство от источника постоянного напряжения 12В. При указанном экземпляре транзистора, выдерживает ток до 10А.

Рассмотрим работу устройства: На транзисторах VT1 и VT2 собран мультивибратор с регулируемой скважностью импульсов. Частота следования импульсов около 7кГц. С коллектора транзистора VT2 импульсы поступают на ключевой транзистор VT3, который управляет нагрузкой. Скважность регулируется переменным резистором R4. При крайнем левом положении движка этого резистора, см. верхнюю диаграмму, импульсы на выходе устройства узкие, что свидетельствует о минимальной выходной мощности регулятора. При крайнем правом положении, см. нижнюю диаграмму, импульсы широкие, регулятор работает на полную мощность.


Диаграмма работы ШИМ в КТ1

С помощью данного регулятора можно управлять бытовыми лампами накаливания на 12 В, двигателем постоянного тока с изолированным корпусом. В случае применения регулятора в автомобиле, где минус соединён с корпусом, подключение следует выполнять через p-n-p транзистор, как показано на рисунке.
Детали: В генераторе могут работать практически любые низкочастотные транзисторы, например КТ315, КТ3102. Ключевой транзистор IRF3205, IRF9530. Транзистор p-n-p П210 заменим на КТ825, при этом нагрузку можно подключать на ток до 20А!

И в заключении следует сказать, что данный регулятор работает в моей машине с двигателем обогрева салона уже более двух лет.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

KTC3198

2 В блокнот
VT3 Полевой транзистор N302AP 1 В блокнот
C1 Электролитический конденсатор 220мкФ 16В 1 В блокнот
C2, C3 Конденсатор 4700 пФ 2 В блокнот
R1, R6 Резистор

4.7 кОм

2 В блокнот
R2 Резистор

2.2 кОм

1 В блокнот
R3 Резистор

27 кОм

1 В блокнот
R4 Переменный резистор 150 кОм 1 В блокнот
R5 Резистор

Классическая схема широтно-импульсного модуля управления 12-ти вольтовой нагрузкой, схема собрана на основе таймера 555 и полевого транзистора.

Для небольшого настольного станка с 12 В питанием, что купил недавно на Али, понадобился модуль регулятора скорости вращения двигателя. В общем решил сделать свою собственную схему, так как снова заказывать этот блок не хотелось, до и дорого будет готовый брать.

Схема ШИМ контроллера 12В


Поразмыслив пришёл к выводу, что нужна схема для регулятора скорости мотора постоянного тока в виде ШИМ-контроллера. Он может сделать гораздо больше, чем просто изменять скорость двигателя. Данная схема имеет выход 12 вольт с различной скважностью и её можно использовать в качестве многих других целей:
  • Регулятор скорости мотора;
  • Светодиодный диммер подсветки;
  • Регулятор тепла для нагреваемого провода;
  • Регулятор напряжения для электролитического травления и т. д.

Все запчасти могут куплены за копейки, или выпаяны со старых плат с деталями. Далее список радиодеталей для сборки схемы:

Детали для регулятора

  • 1 х 0,01 мкФ керамический конденсатор
  • 1 х 0.1 мкФ керамический конденсатор
  • 2 х 1N4001 выпрямительные диоды
  • 1 х 1N4004 выпрямительный диод
  • 1 х IRF530 100 В 14 А полевой транзистор
  • 1 х 100 Ом резистор
  • 1 х 1 кОм резистор
  • 1 х NE555 таймер
  • 1 x 8-контактный разъем под м/с
  • 1 х 100 кОм потенциометр
  • 1 х 70 х 100 односторонняя ПП


На этой картинке показана печатная монтажная плата для сборки ШИМ регулятора, но вы можете разработать свой вариант. При пайке обратите внимание на расположение таймера 555. Все остальные детали вполне понятны куда чего.


Есть 3 перемычки на плате: от GND к С1, с контакта 7 555 на D1 и GND к IRF530.


Также на плате есть сквозное отверстие под транзистор IRF530 - это на теплоотвод.


При подключении мотора, нужно проверить направление вращения двигателя, прежде чем переходить к окончательной сборке, хотя электромотор будет исправно работать в любом направлении. Ну вот и вся конструкция, проверенная и 100% рабочая - успехов вам в её самостоятельной сборке!

© 2024 mchard.ru -- Ноутбук. Работа с текстом. Монитор. Гаджеты. Компьютер. Skype. Восстановление