Выбор средств разработки программного обеспечения. Цп автоматизированные системы управления и промышленная безопасность

Главная / Сеть

Выбор среды разработки

Интегрированная среда разработки, ИСР (англ. IDE, Integrated development environment или integrated debugging environment) -- система программных средств, используемая программистами для разработки программного обеспечения (ПО) .

Среда разработки включает в себя:

Текстовый редактор;

Компилятор и/или интерпретатор;

Средства автоматизации сборки;

Отладчик.

ИСР иногда содержит также средства для интеграции с системами управления версиями и разнообразные инструменты для упрощения конструирования графического интерфейса пользователя. Многие современные среды разработки также включают браузер классов, инспектор объектов и диаграмму иерархии классов -- для использования при объектно-ориентированной разработке ПО. Хотя и существуют ИСР, используемые для нескольких языков программирования -- такие, как Eclipse, NetBeans, Embarcadero RAD Studio, Qt Creator или Microsoft Visual Studio, но обычно в ИСР используется один определённый язык программирования - как, например, Visual Basic, Delphi, Dev-C++.

Частный случай ИСР -- среды визуальной разработки, которые включают в себя возможность визуального редактирования интерфейса программы.

Интегрированные среды разработки были созданы для того, чтобы максимизировать производительность программиста благодаря тесно связанным компонентам с простыми пользовательскими интерфейсами. Это позволит разработчику сделать меньше действий для переключения различных режимов, в отличие от дискретных программ разработки. Однако, так как IDE является сложным программным комплексом, то лишь после долгого процесса обучения среда разработки сможет качественного ускорить процесс разработки ПО.

IDE обычно представляет из себя единственную программу, в которой проводилась вся разработка. Она обычно содержит много функций для создания, изменения, компилирования, развертывания и отладки программного обеспечения. Цель среды разработки заключается в том, чтобы абстрагировать конфигурацию, необходимую, чтобы объединить утилиты командной строки в одном модуле, который позволит уменьшить время, чтобы изучить язык, и повысить производительность разработчика. Также считается, что трудная интеграция задач разработки может далее повысить производительность. Например, IDE позволяет проанализировать код и тем самым обеспечить мгновенную обратную связь и уведомить о синтаксических ошибках. В то время как большинство современных IDE является графическим, они использовались еще до того, как появились системы управления окнами (которые реализованы в Microsoft Windows или X11 для *nix-систем). Они были основаны на тексте, используя функциональные клавиши или горячие клавиши, чтобы выполнить различные задачи (например, Turbo Pascal). Использование IDE для разработки программного обеспечения является прямой противоположностью способа, в котором используются несвязанные инструменты, такие как vi (текстовый редактор), GCC (компилятор), и т.п.

На данный момент существуют несколько сред для разработки приложений на языке C#, основные из них приведены в таблице 1.1.

Таблица 1.1 - Сравнение сред разработки C#

Лицензия GPL предоставляет пользователю права копировать, модифицировать и распространять (в том числе на коммерческой основе) программы (что по умолчанию запрещено законом об авторских правах), а также гарантирует, что и пользователи всех производных программ получат вышеперечисленные права.

Лицензия LGPL позволяет линковать с данной библиотекой или программой программы под любой лицензией, несовместимой с GNU GPL, при условии, что такая программа не является производной от объекта, распространяемого под (L)GPL, кроме как путём линкования. Главное различие между GPL и LGPL в том, что последняя позволяет и такое линкование с данным объектом других, которое создаёт производную от данного работу, если лицензия слинкованных объектов позволяет «модификации для внутреннего использования потребителем и обратную разработку для отладки таких модификаций». Т.е. LGPL, в отличие от GPL позволяет связывание библиотеки с любой программой, не обязательно свободной.

Закрытое (проприетарное) программное обеспечение (англ. proprietary software) -- программное обеспечение, являющееся частной собственностью авторов или правообладателей и не удовлетворяющее критериям свободного ПО (наличия открытого программного кода недостаточно). Правообладатель проприетарного ПО сохраняет за собой монополию на его использование, копирование и модификацию, полностью или в существенных моментах. Обычно проприетарным называют любое несвободное ПО, включая полусвободное.

Geany -- свободная среда разработки программного обеспечения, написанная с использованием библиотеки GTK2. Доступна для следующих операционных систем: BSD, Linux, Mac OS X, Solaris и Windows. Geany распространяется согласно GNU General Public License. Geany не включает в свой состав компилятор. Вместо этого используется GNU Compiler Collection (или любой другой компилятор) для создания исполняемого кода.

Microsoft Visual Studio -- линейка продуктов компании Майкрософт, включающих интегрированную среду разработки программного обеспечения и ряд других инструментальных средств. Данные продукты позволяют разрабатывать как консольные приложения, так и приложения с графическим интерфейсом, в том числе с поддержкой технологии Windows Forms, а также веб-сайты, веб-приложения, веб-службы как в родном, так и в управляемом кодах для всех платформ, поддерживаемых Microsoft Windows, Windows Mobile, Windows CE, .NET Framework, .NET Compact Framework и Microsoft Silverlight. Visual Studio включает в себя редактор исходного кода с поддержкой технологии IntelliSense и возможностью простейшего рефакторинга кода. Встроенный отладчик может работать как отладчик уровня исходного кода, так и как отладчик машинного уровня. Остальные встраиваемые инструменты включают в себя редактор форм для упрощения создания графического интерфейса приложения, веб-редактор, дизайнер классов и дизайнер схемы базы данных. Visual Studio позволяет создавать и подключать сторонние дополнения (плагины) для расширения функциональности практически на каждом уровне, включая добавление поддержки систем контроля версий исходного кода (как например, Subversion и Visual SourceSafe), добавление новых наборов инструментов (например, для редактирования и визуального проектирования кода на предметно-ориентированных языках программирования или инструментов для прочих аспектов цикла разработки программного обеспечения (например, клиент Team Explorer для работы с Team Foundation Server).

MonoDevelop -- свободная среда разработки, предназначенная для создания приложений C#, Java, Boo, Nemerle, Visual Basic .NET, Vala, CIL, C и C++. Также планируется поддержка Oxygene со стороны Embarcadero Technologies. Изначально это был порт SharpDevelop на Mono/GTK+, но с того времени проект далеко ушёл от своего начального состояния. MonoDevelop является частью проекта Mono.

SharpDevelop -- свободная среда разработки для C#, Visual Basic .NET, Boo, IronPython, IronRuby, F#, C++. Обычно используется теми, кто не хочет пользоваться Visual Studio .NET. Существует также форк на Mono/Gtk+ -- MonoDevelop. SharpDevelop 2.0 предоставляет интегрированный отладчик, который использует собственные библиотеки и взаимодействует с исполняющей средой.NET через COM Interop. Хотя SharpDevelop 2.0 (как и VS2005) использует файлы проекта в формате MSBuild, он по-прежнему может использовать компиляторы от.NET Framework 1.0 и 1.1, а также от Mono.

Для разработки необходимо активно использовать все средства языка программирования. Однако среда MonoDevelop использует собственный компилятор, который не полностью поддерживает язык С# в силу того, что является свободной мультиплатформенной разработкой, независимой от создателей языка. Хотя она и обеспечивает мультиплатформенность, но невозможно предсказать поведение языка в новых версиях. А одной из ключевых составляющих проекта является его отказоустойчивость и стабильность и в то же время мультиплатформенность не требуется (пользователей 1С на Linux исчезающе мало). Поэтому эта среда не подходит для разработки данного проекта.

SharpDevelop и Geany не имеют собственных компиляторов. Поэтому для разработки с использованием этих сред все равно придется использовать проприетарное ПО, что делает их использование оправданным лишь в некоторых случаях. Например на низкопроизводительных компьютерах или при сильно ограниченном бюджете проекта. Несмотря на то, что что они могут запускаться и работать в ОС Linux, данные среды разработки в силу отсутствия собственных компиляторов не смогут создать мультиплатформенное приложение, и разработка все равно ограничится операционными системами Windows.

Microsoft Visual Studio также не лишена недостатков. Основными из них являются тяжеловесность, требующая довольно большой вычислительной мощности компьютера; платность; отсутствие мультиплатформенности. Несмотря на эти недостатки, Visual Studio остается предпочитаемой средой разработки большинства C# программистов. Причиной этому является полная поддержка языка, расширенные средства разработки, энергично развивающаяся документация и сама среда. Данную среду разработки будем использовать в проекте.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра прикладной математики и теории систем управления

РЕФЕРАТ

«Информатика и программирование»

Передовые технологии и популярные средства разработки программного обеспечения

Доложилa:

студентка группы 2-В

М.А. Матиишина

Преподаватель: к.е.н., с.н.с.

С. Н. Мичкивский

Донецк 2013

Введение

1. История

2. Основные особенности методологии RAD

2.1 CASE средства

2.2 Применение объектно-ориентированных методов

2.3 Среды разработки, использующие принципы RAD

2.4 Когда применяется RAD.

3. Жизненный цикл методологии RAD

3.1 Фаза анализа и планирования требований

3.2 Фаза проектирования

3.3 Фаза построения

3.4 Фаза внедрения

Заключение

Введение

На начальном этапе существования компьютерных информационных систем их разработка велась на традиционных языках программирования. Однако по мере возрастания сложности разрабатываемых систем и увеличения запросов пользователей (чему в значительной степени способствовал прогресс в области вычислительной техники, а также появление удобного графического интерфейса пользователя в системном программном обеспечении) потребовались новые средства, обеспечивающие значительное сокращение сроков разработки. Это послужило предпосылкой к созданию целого направления в области программного обеспечения -- инструментальных средств для быстрой разработки приложений. Развитие этого направления привело к появлению на рынке программного обеспечения средств автоматизации практически всех этапов жизненного цикла информационных систем. Например, технология Rapid Application Development (RAD).

программный обеспечение ориентированный жизненный

1. История

Концепция RAD стала ответом на неуклюжие методы разработки программ 1970-х и начала 1980-х годов, такие как «модель водопада» (англ. Waterfall model). Эти методы предусматривали настолько медленный процесс создания программы, что зачастую даже требования к программе успевали измениться до окончания разработки. Основателем RAD считается сотрудник IBM Джеймс Мартин, который в 1980-х годах сформулировал основные принципы RAD, основываясь на идеях Барри Бойма и Скотта Шульца. А в 1991 году Мартин опубликовал известную книгу, в которой детально изложил концепцию RAD и возможности её применения. В настоящее время RAD становится общепринятой схемой для создания средств разработки программных продуктов. Именно средства разработки, основанные на RAD, имеют наибольшую популярность среди программистов.

2 . Основные особенности методологии RAD

Методология разработки информационных систем, основанная на использовании средств быстрой разработки приложений, получила в последнее время широкое распространение и приобрела название методологии быстрой разработки приложений -- RAD (Rapid Application Development). Данная методология охватывает все этапы жизненного цикла современных информационных систем.

RAD -- это комплекс специальных инструментальных средств быстрой разработки прикладных информационных систем, позволяющих оперировать с определенным набором графических объектов, функционально отображающих отдельные информационные компоненты приложений.

Под методологией быстрой разработки приложений обычно понимается процесс разработки информационных систем, основанный на трех основных элементах:

· небольшой команде программистов (обычно от 2 до 10 человек);

· тщательно проработанный производственный график работ, рассчитанный на сравнительно короткий срок разработки (от 2 до 6 мес.);

· итерационная модель разработки, основанная на тесном взаимодействии с заказчиком -- по мере выполнения проекта разработчики уточняют и реализуют в продукте требования, выдвигаемые заказчиком.

При использовании методологии RAD большое значение имеют опыт и профессионализм разработчиков. Группа разработчиков должна состоять из профессионалов, имеющих опыт в анализе, проектировании, программировании и тестировании программного обеспечения.

Основные принципы методологии RAD можно свести к следующему:

· используется итерационная (спиральная) модель разработки;

· полное завершение работ на каждом из этапов жизненного цикла не обязательно;

· в процессе разработки информационной системы необходимо тесное взаимодействие с заказчиком и будущими пользователями;

· необходимо применение CASE-средств и средств быстрой разработки приложений;

· необходимо применение средств управления конфигурацией, облегчающих внесение изменений в проект и сопровождение готовой системы;

· необходимо использование прототипов, позволяющее полнее выяснить и реализовать потребности конечного пользователя;

· тестирование и развитие проекта осуществляются одновременно с разработкой;

· разработка ведется немногочисленной и хорошо управляемой командой профессионалов;

· необходимы грамотное руководство разработкой системы, четкое планирование и контроль выполнения работ.

2.1 Средства автоматизации разработки программ (CASE-средства)

В основных принципах методологии RAD, появляется такое понятие как CASE средства. Так вот, средства автоматизации разработки программ (CASE-средства)-- инструменты автоматизации процессов проектирования и разработки программного обеспечения для системного аналитика разработчика ПО и программиста. Первоначально под CASE-средствами понимались только инструменты для упрощения наиболее трудоёмких процессов анализа и проектирования, но в дальнейшем CASE-средства стали определять как программные средства для поддержки процессов жизненного цикла ПО.

Появлению CASE-технологии и CASE-средств предшествовали исследования в области методологии программирования. Программирование обрело черты системного подхода с разработкой и внедрением языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описаний системных требований и спецификаций и т.д. Кроме того, появлению CASE-технологии способствовали и такие факторы, как:

* подготовка аналитиков и программистов, восприимчивых к концепциям модульного и структурного программирования;

* широкое внедрение и постоянный рост производительности компьютеров, позволившие использовать эффективные графические средства и автоматизировать большинство этапов проектирования;

* внедрение сетевой технологии, предоставившей возможность объединения усилий отдельных исполнителей в единый процесс проектирования путем использования разделяемой базы данных, содержащей необходимую информацию о проекте.

2.3 Применение объектно-ориентированных методов

Что касается RAD средств, то они дали возможность реализовывать совершенно иную по сравнению с традиционной технологию создания приложений.

Информационные объекты формируются как некие действующие модели (прототипы), чье функционирование согласовывается с пользователем, а затем разработчик может переходить непосредственно к формированию законченных приложений, не теряя из виду общей картины проектируемой системы.

Возможность использования подобного подхода в значительной степени является результатом применения принципов объектно-ориентированного проектирования, Применение объектно-ориентированных методов позволяет преодолеть одну из главных трудностей, возникающих при разработке сложных систем -- колоссальный разрыв между реальным миром (предметной областью описываемой проблемы) и имитирующей средой.

Использование объектно-ориентированных методов позволяет создать описание (модель) предметной области в виде совокупности объектов -- сущностей, объединяющих данные и методы обработки этих данных (процедуры). Каждый объект обладает своим собственным поведением и моделирует некоторый объект реального мира. С этой точки зрения объект является вполне осязаемой вещью, которая демонстрирует определенное поведение.

В объектном подходе акцент переносится на конкретные характеристики физической или абстрактной системы, являющейся предметом программного моделирования. Объекты обладают целостностью, которая не может быть нарушена. Таким образом, свойства, характеризующие объект и его поведение, остаются неизменными. Объект может только менять состояние, управляться или становиться в определенное отношение к другим объектам.

Широкую известность объектно-ориентированное программирование получило с появлением визуальных средств проектирования, когда было обеспечено слияние (инкапсуляция) данных с процедурами, описывающими поведение реальных объектов, в объекты программ, которые могут быть отображены определенным образом в графической пользовательской среде. Это позволило приступить к созданию программных систем, максимально похожих на реальные, и добиваться наивысшего уровня абстракции. В свою очередь, объектно-ориентированное программирование позволяет создавать более надежные коды, так как у объектов программ существует точно определенный и жестко контролируемый интерфейс.

При разработке приложений с помощью инструментов RAD используется множество готовых объектов, сохраняемых в общедоступном хранилище. Однако обеспечивается и возможность разработки новых объектов. При этом новые объекты могут разрабатываться как на основе существующих, так и «с нуля».

Инструментальные средства RAD обладают удобным графическим интерфейсом пользователя и позволяют на основе стандартных объектов формировать простые приложения без написания кода программы. Это является большим преимуществом RAD, так как в значительной степени сокращает рутинную работу по разработке интерфейсов пользователя (при использовании обычных средств разработка интерфейсов представляет собой достаточно трудоемкую задачу, отнимающую много времени). Высокая скорость разработки интерфейсной части приложений позволяет быстро создавать прототипы и упрощает взаимодействие с конечными пользователями.

Таким образом, инструменты RAD позволяют разработчикам сконцентрировать усилия на сущности реальных деловых процессов предприятия, для которого создается информационная система. В итоге это приводит к повышению качества разрабатываемой системы.

Применение принципов объектно-ориентированного программирования позволило создать принципиально новые средства проектирования приложений, называемые средствами визуального программирования. Визуальные инструменты RAD позволяют создавать сложные графические интерфейсы пользователя вообще без написания кода программы. При этом разработчик может на любом этапе наблюдать то, что закладывается в основу принимаемых решений.

Визуальные средства разработки оперируют в первую очередь со стандартными интерфейсными объектами -- окнами, списками, текстами, которые легко можно связать с данными из базы данных и отобразить на экране монитора. Другая группа объектов представляет собой стандартные элементы управления -- кнопки, переключатели, флажки, меню и т.п., с помощью которых осуществляется управление отображаемыми данными. Все эти объекты могут быть стандартным образом описаны средствами языка, а сами описания сохранены для дальнейшего повторного использования.

В настоящее время существует довольно много различных визуальных средств разработки приложений. Но все они могут быть разделены на две группы -- универсальные и специализированные.

Среди универсальных систем визуального программирования сейчас наиболее распространены такие, как Borland Delphi и Visual Basic. Универсальными мы их называем потому, что они не ориентированы на разработку только приложений баз данных -- с их помощью могут быть разработаны приложения почти любого типа, в том числе и информационные приложения. Причем программы, разрабатываемые с помощью универсальных систем, могут взаимодействовать практически с любыми системами управления базами данных. Это обеспечивается как использованием драйверов ODBC или OLE DB, так и применением специализированных средств (компонентов).

2.4 Среды разработки, использующие принципы RAD

· Borland Delphi

· Borland C++ Builder

· Microsoft Visual Studio

· Macromedia Flash

· Macromedia Authorware

· Macromedia Director

· Visual DataFlex

Быстрая разработка приложений Rapid Application Development (RAD) - это жизненный цикл процесса проектирования, созданный для достижения более высоких скорости разработки и качества ПО, чем это возможно при традиционном подходе к проектированию.RAD предполагает, что разработка ПО осуществляется небольшой командой разработчиков за срок порядка трех-четырех месяцев путем использования инкрементного прототипирования с применением инструментальных средств визуального моделирования и разработки. Технология RAD предусматривает активное привлечение заказчика уже на ранних стадиях -обследование организации, выработка требований к системе. Причины популярности RAD вытекают из тех преимуществ, которые обеспечивает эта технология.Наиболее существенными из них являются:

§ высокая скорость разработки;

§ низкая стоимость;

§ высокое качество.

Визуальные инструменты RAD позволяют максимально сблизить этапы создания информационных систем; анализ исходных условий, проектирование системы, разработка прототипов и окончательное формирование приложений становятся сходными, так как на каждом этапе разработчики оперируют визуальными объектами.

Логика приложения, построенного с помощью RAD, является событийно-ориентированной. Это означает следующее: каждый объект, входящий в состав приложения, может генерировать события и реагировать на события, генерируемые другими объектами. Примерами событий могут быть: открытие и закрытие окон, нажатие кнопки, нажатие клавиши клавиатуры, движение мыши, изменение данных в базе данных и т. п.

Разработчик реализует логику приложения путем определения обработчика каждого события -- процедуры, выполняемой объектом при наступлении соответствующего события. Например, обработчик события «нажатие кнопки» может открыть диалоговое окно. Таким образом, управление объектами осуществляется с помощью событий.

Обработчики событий, связанных с управлением базой данных (DELETE, INSERT, UPDATE), могут реализовываться в виде триггеров на клиентском или серверном узле. Такие обработчики позволяют обеспечить ссылочную целостность базы данных при операциях удаления, вставки и обновления, а также автоматическую генерацию первичных ключей.

2.5 Когда применяется RAD

Применение технологии RAD целесообразно, когда: требуется выполнение проекта в сжатые сроки (90 дней). Быстрое выполнение проекта позволяет создать систему, отвечающую требованиям сегодняшнего дня. Если система проектируется долго, то весьма высока вероятность, что за это время существенно изменятся фундаментальные положения, регламентирующие деятельность организации, то есть, система морально устареет еще до завершения ее проектирования.

Интерфейс пользователя (GUI) есть главный фактор. Нет смысла заставлять пользователя рисовать картинки. RAD технология дает возможность продемонстрировать интерфейс в прототипе, причем достаточно скоро после начала проекта. Проект большой, но поддается разделению на более мелкие функциональные компоненты. Если предполагаемая система велика, необходимо, чтобы ее можно было разбить на мелкие части, каждая из которых обладает четкой функциональностью. Они могут выпускаться последовательно или параллельно (в последнем случае привлекается несколько RAD групп).·

ПО не обладает большой вычислительной сложностью. Современные средства быстрой разработки windows-при-ложений, так называемые rad-средства (rad расшифровывается как rapid application development), обладают в той или иной степени почти всеми возможностями реализации в приложениях подобных интерфейсных элементов. Многие из них позволяют осуществлять доступ к базам данных, в том числе и к серверным БД. borland delphi, на взгляд автора, является в этом отношении наиболее простым и удобным в использовании средством.

RAD-технология не является универсальной, то есть ее применение целесообразно не всегда. Например, в проектах, где требования к программному продукту четко определены и не должны меняться, вовлечение заказчика в процесс разработки не требуется и более эффективной может быть иерархическая разработка (каскадный метод). То же касается проектов, ПО, сложность которых определяется необходимостью реализации сложных алгоритмов, а роль и объем пользовательского интерфейса невелик.

3 . Жизненный цикл методологии RAD

При использовании методологии быстрой разработки приложений жизненный цикл информационной системы состоит из четырех фаз:

· фаза анализа и планирования требований;

· фаза проектирования;

· фаза построения;

· фаза внедрения.

3 .1 Фаза анализа и планирования требований.

На фазе анализа и планирования требований выполняются следующие работы:

· определяются функции, которые должна выполнять разрабатываемая информационная система;

· определяются наиболее приоритетные функции, требующие разработки в первую очередь;

· проводится описание информационных потребностей;

· ограничивается масштаб проекта;

· определяются временные рамки для каждой из последующих фаз;

· в заключение, определяется сама возможность реализации данного проекта в установленных рамках финансирования, на имеющихся аппаратных и программных средствах.

Если реализация проекта принципиально возможна, то результатом фазы анализа и планирования требований будет список функций разрабатываемой информационной системы с указанием их приоритетов и предварительные функциональные и информационные модели системы.

3 .2 Фаза проектирования

На фазе проектирования необходимым инструментом являются CASE-средства, используемые для быстрого получения работающих прототипов приложений.

Прототипы, созданные с помощью CASE-средств, анализируются пользователями, которые уточняют и дополняют те требования к системе, которые не были выявлены на предыдущей фазе. Таким образом, на данной фазе также необходимо участие будущих пользователей в техническом проектировании системы.

При необходимости для каждого элементарного процесса создается частичный прототип: экран, диалог или отчет (это позволяет устранить неясности или неоднозначности). Затем определяются требования разграничения доступа к данным.

После детального рассмотрения процессов определяется количество функциональных элементов разрабатываемой системы. Это позволяет разделить информационную систему на ряд подсистем, каждая из которых реализуется одной командой разработчиков за приемлемое для RAD-проектов время (порядка полутора месяцев). С использованием CASE-средств проект распределяется между различными командами -- делится функциональная модель.

На этой же фазе происходит определение набора необходимой документации.

Результатами данной фазы являются:

· общая информационная модель системы;

· функциональные модели системы в целом и подсистем, реализуемых отдельными командами разработчиков;

· точно определенные с помощью CASE-средства интерфейсы между автономно разрабатываемыми подсистемами;

· построенные прототипы экранов, диалогов и отчетов.

Одной из особенностей применения методологии RAD на данной фазе является то, что каждый созданный прототип развивается в часть будущей системы. Таким образом, на следующую фазу передается более полная и полезная информация. При традиционном подходе использовались средства прототипирования, не предназначенные для построения реальных приложений, поэтому разработанные прототипы не могли быть использованы на последующих фазах и просто «выбрасывались» после того, как выполняли задачу устранения неясностей в проекте.

3 .3 Фаза построения

На фазе построения выполняется собственно быстрая разработка приложения. На данной фазе разработчики производят итеративное построение реальной системы на основе полученных ранее моделей, а также требований нефункционального характера. Разработка приложения ведется с использованием визуальных средств программирования. Формирование программного кода частично выполняется с помощью автоматических генераторов кода, входящих в состав CASE-средств. Код генерируется на основе разработанных моделей.

На фазе построения также требуется участие пользователей системы, которые оценивают получаемые результаты и вносят коррективы, если в процессе разработки система перестает удовлетворять определенным ранее требованиям. Тестирование системы осуществляется непосредственно в процессе разработки.

После окончания работ каждой отдельной команды разработчиков производится постепенная интеграция данной части системы с остальными, формируется полный программный код, выполняется тестирование совместной работы данной части приложения с остальными, а затем тестирование системы в целом.

Завершается физическое проектирование системы, а именно:

· определяется необходимость распределения данных;

· производится анализ использования данных;

· производится физическое проектирование базы данных;

· определяются требования к аппаратным ресурсам;

· определяются способы увеличения производительности;

· завершается разработка документации проекта.

Результатом данной фазы является готовая информационная система, удовлетворяющая всем требованиям пользователей.

3 .4 Фаза внедрения

Фаза внедрения в основном сводится к обучению пользователей разработанной информационной системы.

Так как фаза построения достаточно непродолжительна, планирование и подготовка к внедрению должны начинаться заранее, еще на этапе проектирования системы.

Приведенная схема разработки информационной системы не является универсальной. Вполне возможны различные отклонения от нее. Это связано с зависимостью схемы выполнения проекта от начальных условий, при которых начинается разработка (например, разрабатывается совершенно новая система или на предприятии уже существует некоторая информационная система). Во втором случае существующая система может либо использоваться в качестве прототипа новой системы, либо интегрироваться в новую разработку в качестве одной из подсистем.

Заключение

Несмотря на все свои достоинства, методология RAD тем не менее (как, впрочем, и любая другая методология) не может претендовать на универсальность. Ее применение наиболее эффективно при выполнении сравнительно небольших систем, разрабатываемых для вполне определенного предприятия.

При разработке же типовых систем, не являющихся законченным продуктом, а представляющих собой совокупность типовых элементов информационной системы, большое значение имеют такие показатели проекта, как управляемость и качество, которые могут войти в противоречие с простотой и скоростью разработки. Это связано с тем, что типовые системы обычно централизованно сопровождаются и могут быть адаптированы к различным программно-аппаратным платформам, системам управления базами данных, коммуникационным средствам, а также интегрироваться с существующими разработками. Поэтому для такого рода проектов необходим высокий уровень планирования и жесткая дисциплина проектирования, строгое следование заранее разработанным протоколам и интерфейсам, что снижает скорость разработки.

Методология RAD неприменима не только для создания типовых информационных систем, но и для построения сложных расчетных программ, операционных систем или программ управления сложными инженерно-техническими объектами -- программ, требующих написания большого объема уникального кода.

Методология RAD не может быть использована для разработки приложений, в которых интерфейс пользователя является вторичным, то есть отсутствует наглядное определение логики работы системы. Примерами таких приложений могут служить приложения реального времени, драйверы или службы.

Совершенно неприемлема методология RAD для разработки систем, от которых зависит безопасность людей, -- например, систем управления транспортом или атомных электростанций. Это обусловлено тем, что итеративный подход, являющийся одной из основ RAD, предполагает, что первые версии системы не будут полностью работоспособны, что в данном случае может привести к серьезнейшим катастрофам.

Список источников

1. http://ru.wikipedia.org

2. http://www.inforazrabotky.info

3. http://brain.botik.ru

4. http://promidi.by.ru

5. http://www.citforum.ru

6. Трофимов С.А. CASE-технологии: практическая работа в Rational Rose.

7. http://vk.com/away.php?to=https%3A%2F%2Fdrive.google.com%2Ffolderview%3Fid%3D0B4QYrT5wARvMdUttbnJ4N1F0bFk%26usp%3Dsharing&post=-58064243_12

Размещено на Allbest.ru

...

Подобные документы

    Требования к технологии проектирования программного обеспечения (ПО). Состав и описание стадий полного жизненного цикла ПО. Классификация моделей жизненного цикла ПО, их особенности. Методологии разработки ПО, приёмы экстремальный программирование.

    презентация , добавлен 19.09.2016

    Понятие, сущность и структура жизненного цикла программного обеспечения, описание технологии его проектирования, разработки и сопровождения. Сущность и основные положения международного стандарта ISO/IEC 12207. Перечень основных принципов методологии RAD.

    реферат , добавлен 30.11.2010

    Современные методологические проблемы разработки и внедрения программного обеспечения ERP систем. Основные концептуальные подходы к методологии разработки и внедрения программного обеспечения. Исследование методологии ASAP: ее сильные и слабые стороны.

    дипломная работа , добавлен 29.04.2011

    Технология конструирования программного обеспечения, надежно и эффективно работающего в реальных компьютерах. Модель быстрой разработки приложений (Rapid Application Development) как один из примеров применения инкрементной стратегии конструирования.

    реферат , добавлен 24.06.2009

    Базовые основы разработки программного обеспечения: его классический жизненный цикл, макетирование, стратегии конструирования, модели качества процессов разработки. Применение параллельных алгоритмов и CASE-системы, критерии оценки их эффективности.

    курсовая работа , добавлен 07.04.2015

    Исследование объектно-ориентированного подхода к проектированию программного обеспечения будильника. Модель программного обеспечения. Взаимодействие между пользователями и системой. Диаграммы и генерация программного кода при помощи средств Rational Rose.

    курсовая работа , добавлен 26.09.2014

    Понятие технологии разработки программы. Основа проектирования программного обеспечения. Модели жизненного цикла, возникшие исторически в ходе развития теории проектирования программного обеспечения. Спиральная (spiral), каскадная и итерационная модели.

    презентация , добавлен 11.05.2015

    Основная идея методологии и принципы RAD-разработки информационных систем, ее главные преимущества. Причины популярности, особенности применения технологии. Формулировка основных принципов разработки. Среды разработки, использующие принципы RAD.

    презентация , добавлен 02.04.2013

    Оценка финансовой, стратегической ценности и уровня рисков проекта. Классификация проектов: "свой" заказчик, продукт под заказ, тиражируемый продукт, аутсорсинг. Организация процесса разработки программного обеспечения, методологии его проектирования.

    презентация , добавлен 07.12.2013

    Стадии разработки программного средства. Средства, методологии и методы его разработки. Оценка надежности и качества проекта. Обоснование необходимости разработки программы. Тестирование как процесс выполнения тестовой программы с намерением найти ошибки.

В настоящее время с каждой системой программирования связываются не отдельные инструменты (например, компилятор), а некоторая логически связанная совокупность программных и аппаратных инструментов поддерживающих разработку и сопровождение ПС на данном языке программирования или ориентированных на какую-либо конкретную предметную область. Такую совокупность будем называть инструментальной средой разработки и сопровождения ПС . Для таких инструментальных сред характерно, во-первых, использование как программных, так и аппаратных инструментов, и, во-вторых, определенная ориентация либо на конкретный язык программирования, либо на конкретную предметную область.

Инструментальная среда не обязательно должна функционировать на том компьютере, на котором должно будет применяться разрабатываемое с помощью ее ПС. Часто такое совмещение бывает достаточно удобным (если только мощность используемого компьютера позволяет это): не нужно иметь дело с компьютерами разных типов, в разрабатываемую ПС можно включать компоненты самой инструментальной среды. Однако, если компьютер, на котором должно применяться ПС, недоступен для разработчиков этого ПС (например, он постоянно занят другой работой, которую нельзя прерывать, или он находится еще в стадии разработки), либо неудобен для разработки ПС, либо мощность этого компьютера недостаточна для обеспечения функционирования требуемой инструментальной среды, то применяется так называемый инструментально-объектный подход . Сущность его заключается в том, что ПС разрабатывается на одном компьютере, называемым инструментальным , а применяться будет на другом компьютере, называемым целевым (или объектным ).

Различают три основных класса инструментальных средразработки и сопровождения ПС (рис. 16.1): ·

среды программирования, ·

рабочие места компьютерной технологии,·

инструментальные системы технологии программирования.

Среда программирования предназначена в основном для поддержки процессов программирования (кодирования), тестирования и отладки ПС. Рабочее место компьютерной технологии ориентировано на поддержку ранних этапов разработки ПС (спецификаций) и автоматической генерации программ по спецификациям. Инструментальная система технологии программирования предназначена для поддержки всех процессов разработки и сопровождения в течение всего жизненного цикла ПС и ориентирована на коллективную разработку больших программных систем с длительным жизненным циклом. Для таких систем стоимость сопровождения обычно превышает стоимость разработки.

Рис. 16.1. Основные классы инструментальных сред разработки и сопровождения ПС.

  1. Инструментальные среды программирования.

Инструментальные среды программирования содержат прежде всего текстовый редактор, позволяющий конструировать программы на заданном языке программирования, инструменты, позволяющие компилировать или интерпретировать программы на этом языке, а также тестировать и отлаживать полученные программы. Кроме того, могут быть и другие инструменты, например, для статического или динамического анализа программ. Взаимодействуют эти инструменты между собой через обычные файлы с помощью стандартных возможностей файловой системы.

Различают следующие классы инструментальных сред программирования (см. рис. 14.2): ·

среды общего назначения,·

языково-ориентированные среды.

Инструментальные среды программирования общего назначения содержат набор программных инструментов, поддерживающих разработку программ на разных языках программирования (например, текстовый редактор, редактор связей или интерпретатор языка целевого компьютера) и обычно представляют собой некоторое расширение возможностей используемой операционной системы. Для программирования в такой среде на каком-либо языке программирования потребуются дополнительные инструменты, ориентированные на этот язык (например, компилятор).

Рис.16.2. Классификация инструментальных сред программирования.

Языково-ориентированная инструментальная среда программирования предназначена для поддержки разработки ПС на каком-либо одном языке программирования и знания об этом языке существенно использовались при построении такой среды. Вследствие этого в такой среде могут быть доступны достаточно мощные возможности, учитывающие специфику данного языка. Такие среды разделяются на два подкласса: ·

интерпретирующие среды, ·

синтаксически-управляемые среды.

Интерпретирующая инструментальная среда программирования обеспечивает интерпретацию программ на данном языке программирования, т.е. содержит прежде всего интерпретатор языка программирования, на который эта среда ориентирована. Такая среда необходима для языков программирования интерпретирующего типа (таких, как Лисп), но может использоваться и для других языков (например, на инструментальном компьютере). Синтаксически-управляемая инструментальная среда программирования базируется на знании синтаксиса языка программирования, на который она ориентирована. В такой среде вместо текстового используется синтаксически-управляемый редактор, позволяющий пользователю использовать различные шаблоны синтаксических конструкций (в результате этого разрабатываемая программа всегда будет синтаксически правильной). Одновременно с программой такой редактор формирует (в памяти компьютера) ее синтаксическое дерево, которое может использоваться другими инструментами.

Для оптимальной разработки среды программного средства необходимо комбинировать различные языки программирования, так как каждый из них направлен на выполнение определенных целей и задач. Как, например, несколько команд PHP позволяют создать целую Web-страницу, но на практике почти всегда скрипт используется совместно с HTML, и обычно исходный текст скрипта содержит большое количество строк. Но, не смотря на это, следует отметить, что код на PHP может находиться в любом месте HTML-документа, однако он не обязательно должен использовать HTML. Необходимо лишь обеспечить, чтобы PHP-код создавал корректный HTML-код, который затем будет правильно отображен Web-браузером.

HTML - гипертекстовый язык разметки, который используется для создания документов в Интернет. С помощью него создается необходимая структура и сетка страницы, внешний вид которой в дальнейшем совершенствуется CSS и JavaScript. В настоящий момент последней версией является HTML5, которой предшествовала HTML4.01. Большинство Web-ресурсов построены на основе именно этого языка.

В отличие от HTML 4, у которого 3 валидатора, у HTML 5 валидатор один: . HTML 5 поддерживает MathML и SVG.

Новые теги: section, article, aside, hgroup, header, footer, nav, dialog, figure, video, audio, source, embed для вставки контента с плагином(только), mark, progress, meter, time, ruby, rt, rp, canvas, command, detailes, datalist, keygen, output.

Новые типы input: tel, search, url, email, datetime, date, month, week, time, datetime-local, number, range, color.

Новые атрибуты для тегов: атрибуты ping media для a и area и т. д.

Исчезновение некоторых тегов, по причине того, что их можно заменить CSS: basefont, big, center, font, s, strike, tt, u.

Исчезновение фреймов из-за негативного влияния на всю страницу

Исчезновение некоторых тегов, замененных в обновленной спецификации на более актуальные: acronym(используется abbr), applet(используется object), isindex, dir.

Не поддерживаются некоторые атрибуты у тегов из-за отсутствия необходимости: rev и charset у link и a, shape и coords у a и т. д.

Не поддерживаются некоторые атрибуты у тегов по причине того, что при использовании CSS достигается лучший эффект: align у всех тегов, alink, link, text, vlink у body и так далее.

Новые API: рисование 2D-картинок в реальном времени; контроль над проигрыванием медиафайлов; хранение данных в браузере; редактирование; Drag-and-drop; работа с сетью; MIME; новые элементы в DOM.

CSS - формальный язык описания внешнего вида документа, написанного с помощью языка разметки. CSS это акроним для Cascading Style Sheets/Каскадных таблиц стилей. CSS это язык стилей, определяющий отображение HTML-документов. Например, CSS работает с шрифтами, цветом, полями, строками, высотой, шириной, фоновыми изображениями, позиционированием элементов и многими другими вещами. HTML может использоваться для оформления Web-сайтов, но CSS предоставляет большие возможности и более точен и проработан. CSS, на сегодняшний день, поддерживается всеми браузерами.

HTML используется для структурирования содержимого страницы. CSS используется для форматирования этого структурированного содержимого. По мере развития Web дизайнеры начали искать возможности форматирования онлайновых документов. Чтобы удовлетворить возросшим требованиям потребителей, производители браузеров (тогда - Netscape и Microsoft) изобрели новые HTML-тэги, такие, например, как , которые отличались от оригинальных HTML-тэгов тем, что они определяли внешний вид, а не структуру. Это также привело к тому, что оригинальные тэги структурирования, такие как

, стали все больше применяться для дизайна страниц вместо структурирования текста. Многие новые тэги дизайна, такие как , поддерживались только одним браузером. «Вам необходим браузер X для просмотра этой страницы» - такой отказ стал обычным явлением на Web-сайтах.

CSS был создан для исправления этой ситуации путем предоставления Web-дизайнерам возможностей точного дизайна, поддерживаемых всеми браузерами. Одновременно произошло разделение представления и содержимого документа, что значительно упростило работу.

Появление CSS стало революцией в мире Web-дизайна. Конкретные преимущества CSS:

Управление отображением множества документов с помощью одной таблицы стилей;

Более точный контроль над внешним видом страниц;

Различные представления для разных носителей информации (экран, печать, и т. д.);

Сложная и проработанная техника дизайна.

Существуют способа применить правила CSS к HTML-документу.

Метод 1: Инлайн/In-line (атрибут style). Можно применять CSS к HTML с помощью HTML-атрибута style. Красный цвет фона можно установить так:

Example

This is a red page

Метод 2: Внутренний (тэг style). Второй способ вставки CSS-кодов - HTML-тэг